在数学分析中,我们常常处理的是连续函数,因为这种函数有着良好的性质,在微分与积分时可以得到比较好的结果。当然,我们偶尔也会处理仅在有限点处不连续的函数,它们在某些结果上从和连续函数并没有多大差别。
可是当考虑无限点处不连续的函数时,我们原有的方法失效了。一个典型的例子就是 f 在$\ [0,1]\ $上的Riemann积分,其中 f 形式如下所示:
也即该函数在无理点处取值为1,在有理点处取值为0。注意到这个函数在$\ [0,1]\ $上是Riemann不可积的。(这也促使我们需要从更高的观点来看待积分)
首先,我们将点集分为有限点集和无限点集:有限点集是很好处理的,重点是无限点集。这里我所说的“很好处理”,是指我们很容易判断一个集合的大小,有限点集的大小就是看这个集合中元素的个数,数数我们总是会的。而当我们面对一个无限点集时,我们并不好描述它的“无限”究竟是多么不加限制。
先从有限集合获取灵感: